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Abstract. Opposition-based learning (OBL) scheme is an effective
mechanism to enhance soft computing techniques, but it also has some
limitations. To extend the OBL scheme, this paper proposes a novel
rotation-based learning (RBL) mechanism, in which a rotation number
is achieved by applying a specified rotation angle to the original number
along a specific circle in two-dimensional space. By assigning different
angles, RBL can search any point in the search space. Therefore, RBL
could be more flexible than OBL to find the promising candidate solu-
tions in the complex search spaces. In order to verify its effectiveness,
the RBL mechanism is embedded into differential evolution (DE) and
the rotation-based differential evolution (RDE) algorithm is introduced.
Experimental studies are conducted on a set of widely used benchmark
functions. Simulation results demonstrate the effectiveness of RBL mech-
anism, and the proposed RDE algorithm performs significantly better
than, or at least comparable to, several state-of-the-art DE variants.

Keywords: Evolutionary computation, differential evolution, rotation-
based learning, opposition-based learning.

1 Introduction

In the past decades, some researchers have proposed many excellent nature-
inspired algorithms which have shown better performance compared to tra-
ditional methods when tackling the complex problems. But, there is not any
algorithm can solve all kinds of optimization problems with the same efficiency
level due to their own disadvantages. In order to further performance improve-
ment and expanding the application scopes of classical algorithms, a variety of
enhanced mechanisms have been proposed. The opposition-based learning (OBL)
is an effective enhancement scheme for optimization process, and it was intro-
duced by Tizhoosh [10]. OBL has been used to various fields, such as DE [7],
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PSO [17], ABC [15], ACO [3], etc. However, the OBL mechanism also has its
limitations that it can only search one opposite point in the opposition space. So
that it could be inefficient in some situations, e.g. if the domain and search space
of a problem are symmetrical, then putting the OBL into effect is meaningless.

In this paper, a novel rotation-based learning mechanism, called RBL, is pro-
posed by extending the classical OBL mechanism. Using RBL mechanism, a
rotation number can be obtained by rotating anticlockwise the original number
by the specified angle on a specific circle in two-dimensional space. Hence, RBL
can find any point in the search space by rotating different angles. Moreover,
RBL also has several different application modes, e.g. OBL can be seen as a
special case of RBL when the rotation angle is equal to 180 degrees.

An important goal in this paper is to verify the effectiveness of RBL mecha-
nism. To this end, we embed the RBL mechanism into DE, and introduce the
rotation-based differential evolution (RDE) algorithm. Experimental studies are
conducted on a suite of 13 global optimization problems. The experiment results
show that the RDE algorithm outperforms the other algorithms on the majority
of the test problems.

2 Related Work

2.1 Differential Evolution

As a population-based search method, DE firstly produces an initial vector pop-
ulation, in which the values of each dimension for all individuals are randomly
sampled within the search space. Then, DE evolves the subsequent populations
until the stop criteria are met. Assume that XG

i (i=1,2,. . . ,NP) is the ith indi-
vidual in population P(G) (NP is the population size, and G is the generation
index). The DE/rand/1/exp scheme used in this paper is described as follows.

Mutation– It is used to produce the mutant (or donor) vector V G
i as

V G
i = XG

r1 + F · (XG
r2 −XG

r3), (1)

where r1, r2 and r3 are randomly selected from [1, NP ], and they plus i are
mutually different. F is amplification factor, and (XG

r1−XG
r2) is differential vector.

Crossover–DE utilizes the crossover operation to generate new trial vector
UG
i = (UG

1i , U
G
2i , . . . , U

G
Di) (D indicates problem dimension). In which, each com-

ponent is defined by

UG
ji =

{
V G
ji , if j=〈n〉D, 〈n+1〉D, . . . , 〈n+L−1〉D

XG
ji , otherwise

(2)

where n acts as the starting point of exchange in target vector, and L denotes the
number of components that donor vector actually contributes to target vector.

Selection–It is an approach which decides which vector (UG
i orXG

i ) should be
a member of next generation G+1. For the minimization problems, the selection
operator is defined by the following greedy mechanism:

XG+1
i =

{
UG
i , if f(UG

i ) ≤ f(XG
i )

XG
i , otherwise

(3)
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Ever since differential evolution (DE) was proposed by Price and Storn [9] in
1995, vast DE variants have been introduced to optimize the various benchmark
and real-world problems. A comprehensive explanation of DE and its variants
can be found in the survey [2].

2.2 Opposition-Based Learning (OBL)

The main idea behind OBL is the simultaneous consideration of an estimation
and its opposite estimation in order to provide another chance to create a candi-
date solution closer to the global optimum. In [8], Rahnamayan et al. proposed
an Euclidean distance-to-optimal solution proof that shows intuitively why con-
sidering the opposite of a candidate solution is more beneficial than another
random solution. In OBL mechanism, the key concepts are described as follows.

Opposite Number: Let z ∈ [a, b] be a real number. The opposite number z is
defined by

z = a+ b− z. (4)

Obviously, the definition of the opposite number can be extended to higher
dimensions.

Opposite Point: Let Z = (z1, z2, . . . , zD) be a point in the D-dimensional

search space, where zj ∈ Rj = [aj, bj ], j ∈ [1, 2, . . . , D] and Z ∈ S =
∏D

j=1 Rj .

The opposite point Z= (z1, z2, . . . , zD) is defined by

zj = aj + bj − zj. (5)

Note that the OBL mechanism is not used in every generation during the
search process. In some opposition-based optimization algorithms, OBL opera-
tion is often conducted by the specified probability parameter, known as jumping
rate (Jr)[7] or probability of opposition (po)[12], which is a constant number in
(0,1) and is often determined by empirical experiences. More descriptions about
OBL can be found in the survey [14].

3 The Proposed Algorithm

3.1 Rotated-Based Explanation of OBL

In the OBL mechanism, an opposite number is mirrored to its original number by
the center of the defined boundary in one-dimensional space (i.e. a number axis).
However, a one-dimensional number axis can be placed in a two-dimensional
space as well, so that the opposite number can be explained in another way.

As shown in Fig. 1(a), for a given two-dimensional plane with x axis and y
axis, a number z, and its lower boundary a and upper boundary b, can be marked
by points Z, A and B on x axis. The center point of the interval [a, b] is denoted
by C, its coordinate is a+b

2 . Then, a circle can be drawn on the plane with the

center of C, and the radius of r(= b−a
2 ). Through the point Z, a straight line,
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Fig. 1. The geometric interpretation of opposite number (a), and rotation number (b)
in two-dimensional plane

which is perpendicular to x axis and intersects with the circle on point L, can be
drawn. Obviously, the number z is the x position of point L, and the length of
line segment CL is equal to the radius r of the circle. For the sake of convenience,
two variables u and v are defined by:

u = |−→CZ| = z − a+ b

2

v = |LZ| =
√
r2 − u2 =

√
(z − a)(b − z),

(6)

where |LZ| indicates the length of line segment LZ, and that |−→CZ| denotes the
length of the directed line segment

−→
CZ together with the sign which indicates

the direction of the line segment. Note that, the two points of the directed line
segment should be on the same number axis in two-dimensional space.

Assume that the intersection angle of ∠LCB is denoted by α, then the fol-
lowing formulas are satisfied.

cosα = cos∠LCB =
|−→CZ|
|LC| =

u

r

sinα = sin∠LCB =
|LZ|
|LC| =

v

r

(7)

Let the point L rotate 180 degrees counterclockwise around the circle, a new
point M will be reached. The projection of M on x axis is denoted by Z. Obvi-
ously, its coordinate z is just the opposite number of z. Therefore, an opposite
number in OBL can be explained as rotating 180 degrees of the original number
in the two-dimensional plane.

3.2 Rotated-Based Learning (RBL)

Inspired from the analysis above, the OBL mechanism can be extended to a
rotation-based learning (RBL) mechanism by rotating any specified deflection

Administrator
Highlight
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Algorithm 1. The RBL mechanism for a population-based algorithm

1: {Update the boundary vectors a, b and its center point C for current population
P = {Z1, Z2, . . . , ZD}}

2: for i =1 to D do
3: ai ← the minimum value of ith variable in P ;
4: bi ← the maximum value of ith variable in P ;
5: ci ← ai+bi

2
;

6: end for
7: {Produce the rotation-based population RP = {Z∗

1 , Z
∗
2 , . . . , Z

∗
D}}

8: for Zi ∈ P do
9: {Generate the new rotation-based individual Z∗

i = {z∗i1, z∗i2, . . . , z∗iD}}
10: Set the rotation degree β;
11: for j = 1 to D do
12: Calculate the values of uij ∈ ui and vij ∈ vi by (10) and (11);
13: Calculate z∗ij by (12).
14: end for
15: end for

angle. As shown in Fig. 1(b), for a given number z, the point Z, L, C, and the
circle with radius r are all fixed. If rotating the L point by β degrees counter-
clockwise around the circle, then a new point N will be reached. So, the angle of
∠NCB is α+ β. The projection of point N on x axis is point Z∗, its coordinate
z∗ on x axis is the rotation number of z. Let the quantity of directed line

segment
−−→
CZ∗ be denoted by u∗, which is obtained by

u∗ = r × (cos(α+ β)) = u× cosβ − v × sinβ. (8)

Then, the rotation number z∗ can be calculated by

z∗ = (
a+ b

2
) + u∗. (9)

It is clearly that the rotation number can search any point in the rotation
space through the rotation of different angles. Moreover, the concept of rotation
number can be easily generalized to higher dimensions. Let Z = (z1, z2, . . . , zD)
be a vector with D variables. a = [a1, a2, . . . , aD] and b = [b1, b2, . . . , bD] are
the lower boundary and upper boundary of Z, respectively, and zi ∈ [ai, bi],
i = 1, 2, . . . , D. Therefore, the center point of rotation space [a, b]D is indicated
by C = (c1, c2, . . . , cD), and ci =

ai+bi
2 . The radius vector is R = (r1, r2, . . . , rD),

and ri =
bi−ai

2 . Similar to (6), all the quantities of directed line segment
−−→
CiZi

are indicated by the vector U = (u1, u2, . . . , uD), and ui is defined by

ui = zi − ai + bi
2

. (10)

The vector V = (v1, v2, . . . , vD) is used to indicate all the lengths of point Zi to
its corresponding intersection point Li on the circle, and vi is defined by

vi =
√
(zi − ai)(bi − zi). (11)
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For every dimension, let the point Z rotate β degrees counterclockwise by the
center point C, then the rotation point Z∗ = (z∗1 , z

∗
2 , . . . , z

∗
D) can be achieved,

where the z∗i is defined by

z∗i = (
ai + bi

2
) + (ui × cosβ − vi × sinβ). (12)

Based on the above analysis, the proposed RBL mechanism can rotate any
degrees between 0◦ and 360◦ (same as the interval (−180◦, 180◦)), and explore
any point in the search space. Actually, RBL mechanism also can be adapted
to different application modes by specifying different angles. For example, when
the deflection angle is fixed at 180 degrees, the RBL mechanism is equal to
OBL mechanism. When the deflection angle is arranged carefully so that the
rotation points can fall in between the center point M and the opposition point,
RBL mechanism could be translated into the quasi-oppositional learning (QOL)
mechanism [6]. So, the RBL mechanism can be seen as an extension of the OBL
and QOL mechanisms. Moreover, if the deflection angle is set randomly among
the interval (0◦, 360◦), then RBL can be seen as a random search. Therefore, the
RBL mechanism is very flexible for finding the potential promising solutions.

Nevertheless, the Gaussian distribution is simply used in this paper to deter-
mine the deflection angle, and it is defined as

β = β0 ·N(1, σ), (13)

where β and β0 indicate the deflection angle and its basic number, respectively.
σ is the standard deviation of the Gaussian function N(·, ·), and is used to adjust
the variation of the basic number. Before calculating the parameter, an initial
value β0 should be set firstly. In the following experiments, β0 and σ will be set
to 180◦ and 0.25, respectively. Then, β will vary mainly within [90◦,270◦], and
fluctuate around the 180◦ randomly. This is also the key that RBL can overcome
the disadvantages of the OBL mechanism.

Like OBL mechanism, the RBL mechanism also can be embedded into a
population-based algorithm. In order to take RBL into practice, the rotation
space should be obtained firstly by calculating the minimum and maximum
values of each dimension of all individuals in the population. Moreover, the
center point of the rotation space, the lower and upper bound vectors should
be obtained as well. Then, the rotation-based population RP which consisting
the rotation-based individuals generated by (10)–(12) will be produced. The
implementation pseudocode of RBL mechanism is shown in Algorithm 1. Note
that, the rotation angle β in step 10 should be generated by (13) in this paper.

3.3 Rotation-Based Differential Evolution

In order to verify the effectiveness of RBL mechanism, the similar algorithmic
structure of ODE [7] is adopted to produce the rotation-based differential evo-
lution (RDE) algorithm by embedding the RBL mechanism into DE algorithm.
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Algorithm 2. The RDE Algorithm

1: Initialize the parameters pr0 and β0;
2: Randomly initialize each individual in population P ;
3: Conduct RBL mechanism to produce the rotation-based population RP ;
4: Select NP fittest individuals from {P,RP} as the initial population P ;
5: while FEs ≤ MAX FEs do
6: if rand(0, 1) ≤ pr then
7: Conduct the RBL mechanism to produce the rotation-based population RP ;
8: Select NP fittest individuals from {P,RP} as the new population P ;
9: Update the pr by (13);
10: else
11: Execute the DE/rand/1/exp scheme;
12: end if
13: Update the best individual;
14: end while
15: Output the best individual;

The pseudocode of the RDE algorithm is shown in Algorithm 2. In RDE algo-
rithm, the RBL mechanism is used for both population initialization and gener-
ation jumping. In population initialization phase, a basic population P is firstly
initialized by randomly generating individuals. And then, the RBL mechanism
shown in Algorithm 1 is used to produce the rotation-based population RP .
Finally, all individuals in P

⋃
RP are evaluated, and the NP best individuals

are selected as the initial population P .
Similar to OBL mechanism, a new probability of rotation (pr) parameter,

which is a real number within (0, 1), is introduced to control the execution of
RBL mechanism. In each generation, if a random number belongs to (0,1) is less
than pr, then RBL mechanism will be conducted to produce the rotation-based
population. Then, the NP best individuals from P

⋃
RP are selected as the new

population for next generation. Otherwise, the classicalDE/rand/1/exp scheme
(described in Section 2) will be executed to generate the next evolution-based
population.

In RDE algorithm, the new probability of rotation (pr) parameter should be
set ahead. For convenience, the self-adaptive mechanism defined in (13) is also
used to generate the parameter pr. Using the self-adaptive mechanism, RDE
algorithm only needs to predefine two initial values of parameters pr and β,
which are indicated by pr0 and β0, respectively.

Compared with ODE algorithm, the main enhancements in RDE include the
adoption of extended RBL mechanism, and the use of Gaussian distribution to
generate the rotation angles. These two mechanisms can overcome the disadvan-
tages of OBL mechanism which can only search one fixed point in the opposition
space, and can improve the exploration ability of RDE algorithm. In addition,
the self-adaptive mechanism also can improve the usability of RDE.
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3.4 Time Complexy of RDE

Base on the analysis above, the algorithmic structure of RDE is very similar to
ODE algorithm [7]. The main difference between them is the enhancement mech-
anism of DE algorithm, i.e. RBL or OBL mechanism. Nevertheless, the RBL also
has the same computational time complexity with OBL mechanism. Therefore,
same as ODE algorithm, computational time complexity of RDE algorithm is
O(T ·D · O(F )), in which T indicates the maximum fitness evaluation number,
and O(F ) represents the computational time complexity of the optimization
problems.

Table 1. Computational results achieved by OPSO, ODE, QODE, and RDE

Function Dim OPSO ODE QODE RDE

F1 30 4.38E-62 1.04E-28 3.59E-34 2.89E-31
F2 30 0.00E+00 3.49E-09 0.00E+00 3.39E-14
F3 30 4.00E-08 1.23E-01 4.92E-04 2.92E-02
F4 30 2.07E+00 3.24E-04 6.67E-02 1.31E-02
F5 30 1.23E+01 2.21E+01 2.28E+01 2.28E+01
F6 30 1.33E-01 0.00E+00 1.00E-01 0.00E+00
F7 30 2.88E-03 1.77E-03 8.88E-04 4.31E-03
F8 30 -7.71E+03 -6.17E+03 -6.23E+03 -1.26E+04
F9 30 4.61E+01 6.41E+01 1.05E+02 1.02E-05
F10 30 1.17E+00 1.20E-14 3.41E-15 6.60E-15
F11 30 2.08E-02 5.75E-04 2.71E-03 0.00E+00
F12 30 2.60E-01 3.02E-17 3.02E-17 3.02E-17
F13 30 1.07E-02 2.88E-17 3.66E-04 2.88E-17

w/t/l 8/0/5 7/3/3 6/1/6 –

”w/t/l” means that the RDE algorithm wins in w functions, ties in t functions,
and loses in l functions to other algorithm.

4 Experimental Verifications

4.1 Test Functions

In the following experiments, 13 well-known and widely used global optimization
functions are chosen as the test bed [1], [11]. Among these problems, the first
five functions F1 – F5 are unimodal functions. F6 is a step function which has
a minimum and is discontinuous. F7 is a noisy quartic function. F8–F13 are
multi-modal functions with many local minima.

Two groups of comparison will be taken in the following experiments. The first
is between RDE and other three opposition-based algorithms, include ODE [7],
QODE [6] and OPSO [4]. And the second comparison is between RDE and other
state-of-the-art DE algorithms, include jDE [1], SaDE [5], JADE [16] and CoDE
[13]. For the fair comparison, we follow the parameter settings and procedures
specified of these algorithms in their original papers.



Rotation-Based Learning 519

Based on the empirical experience, the parameters pr0 in RDE algorithm is
set to 0.2. Therefore, parameters pr will change in [0.1,0.3] but around 0.2 during
the evolution. Some fixed parameters, such as NP=60, F=0.5 and Cr=0.9 are
used for the proposed RDE algorithm. The maximum fitness evaluation number
(MAX FEs) is set to 5000×D. Each run stops when the MAX FEs is met.

4.2 Comparison of RDE with Opposition-Based Algorithms

In order to verify the effectiveness of RBL mechanism, the comparison between
RDE and some opposition-based algorithms is conducted firstly. The problem
dimension D is set to 30. The experiment results and their rough comparisions
are list in Table 1. It can be seen that the RDE algorithm obtains 6 best values
among the 13 test functions, while the other three algorithms all get 4 best
values. And that, RDE outperforms OPSO and ODE algorithms on 8 and 7
functions, respectively. Nevertheless, RDE and QODE all beat each other on 6
functions, and obtain the matched results.

Table 2 lists the results of the Friedman average ranking test among the four
algorithms. It can be seen that RDE algorithm gets the least value, which means
that RDE algorithm has the best comprehensive performance among the four
algorithms. Therefore, RDE is a very competitive algorithm compared to other
opposition-based algorithms. It also can be deduced that the RBL mechanism
is more effective than traditional opposition-based learning mechanism.

Table 2. The average ranking achieved by RDE and other algorithms when D=30

Algorithm RDE QODE ODE OPSO

Ranking 2.19 2.46 2.62 2.73

4.3 Comparison of RDE with Some State-of-the-Art DE Algorithms

Experimental study is also conducted to compare the performance of the pro-
posed RDE algorithm to other four algorithms, including jDE, SaDE, JADE
and CoDE, on the mentioned test suite when D=50. Table 3 lists the experi-
mental results achieved by the five algorithms. It can be seen that the proposed
RDE algorithm achieves 7 best values, and three of them are optimum solutions.
SaDE and jDE algorithm get 5 and 3 best values including 2 and 1 global opti-
mums, respectively. In addition, JADE and CoDE algorithms all get only 1 best
value.The comprehensive comparison results between RDE and other algorithms
on the bottom of Table 3 show that, RDE outperforms CoDE, jDE, JADE and
SaDE on 12, 9, 10 and 7 functions, respectively.

In addition, it can be seen that RDE algorithm gets 5 best values for the
multi-model functions. Whereas, SaDE gets 4 best values on unimodal func-
tions. This implies that the proposed RDE algorithm is better at solving the
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Table 3. Computational results achieved by RDE and other four algorithms

Function Dim CoDE jDE JADE SaDE RDE

F1 50 1.48E-04 3.46E-18 4.90E-55 2.27E-69 1.23E-30
F2 50 5.84E-04 4.52E-11 7.82E-31 5.77E-43 1.63E-13
F3 50 6.34E+04 2.45E+03 1.84E+02 5.33E-04 2.34E+01
F4 50 3.44E+01 8.04E-01 5.15E+00 1.13E+01 1.42E+00
F5 50 3.58E+02 4.06E+01 5.28E+01 1.60E+01 4.32E+01
F6 50 0.00E+00 0.00E+00 2.40E+00 4.87E+00 0.00E+00
F7 50 1.25E-01 1.59E-02 6.32E-03 1.04E-02 6.03E-03
F8 50 -20656.70 -16154.80 -20933.40 -20949.10 -20949.10
F9 50 6.89E+01 9.67E+01 1.11E-09 3.32E-02 7.21E-05
F10 50 1.19E+01 4.58E-10 6.82E-01 1.25E+00 9.56E-15
F11 50 1.14E-03 0.00E+00 8.03E-03 6.29E-03 0.00E+00
F12 50 8.66E-04 1.87E-17 8.29E-03 2.90E-02 1.81E-17
F13 50 7.19E-04 3.41E-17 1.46E-03 2.43E-01 2.88E-17

w/t/l 12/1/0 9/2/2 10/0/3 7/1/5 –

”w/t/l” means that the RDE algorithm is wins in w functions, ties in t functions,
and loses in l functions to other algorithm.

Table 4. The average ranking achieved by RDE and other algorithms when D=50

Algorithm RDE SaDE jDE JADE CoDE

Ranking 1.96 2.92 2.96 3.00 4.15

Table 5. Wilcoxon’s test between RDE and other algorithms when D=50

Algorithm SaDE jDE JADE CoDE

p−values 3.42E-01 6.15E-02 2.87E-02 2.44E-04

multi-modal problems. Fig. 2 illustrates the convergence curves achieved by the
five algorithms on F6, F10, F11 and F13 whenD=50. As seen that the convergence
speed of RDE is very fast among the five algorithms.

The results of Friedman average ranking test are shown in Table 4. Obviously,
RDE achieves the best comprehensive performance among the five algorithms.
Table 5 shows the p-values applying Wilcoxon’s test between RDE and the other
four algorithms. The p-value below 0.05 (the significant level) are shown in bold-
face. As seen, RDE is significantly better than JADE and CoDE algorithms on
the test bed when D=50. Although RDE is not significantly better than jDE
and SaDE, but the ranking values in Table 4 show that RDE has better com-
prehensive performance among these algorithms.
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Fig. 2. The convergence curves of the five algorithms on F6, F10, F11 and F13

5 Conclusions

In this paper, a novel rotation-based learning (RBL) mechanism is proposed by
extending the OBL mechanism. Compared to the OBL, RBL can search any
point in the rotation space of a number, so it is more flexible to find the promis-
ing solutions. By embedding the RBL mechanism into DE, the RDE algorithm
is proposed. The comparisons between RDE and other opposition-based algo-
rithms and some state-of-the-art DE algorithms demonstrate the effectiveness
and efficiency of both the RBL mechanism and RDE algorithm.

In the future, the more effective application modes of RBL mechanism should
be studied in order to improve the performance of RDE algorithms. Meanwhile,
embedding the RBL mechanism into other nature-inspired algorithms will be
investigated as well.
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